Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Int Immunopharmacol ; 133: 112062, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652967

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.


Assuntos
Células Dendríticas , Indolamina-Pirrol 2,3,-Dioxigenase , Monócitos , Doença de Parkinson , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Humanos , Células Dendríticas/imunologia , Doença de Parkinson/imunologia , Monócitos/imunologia , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Eur J Pharmacol ; 968: 176420, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38367683

RESUMO

BACKGROUND: Proinflammatory cytokines powerfully induce the rate-limiting enzyme indoleamine 2, 3-dioxygenase-1 (IDO-1) in dendritic cells (DCs) and monocytes, it converts tryptophan (Trp) into L-kynurenine (KYN), along the kynurenine pathway (KP). This mechanism represents a crucial innate immunity regulator that can modulate T cells. This work explores the role of IDO1 in lymphocyte proliferation within a specific pro-inflammatory milieu. METHODS: Peripheral blood mononuclera cells (PBMCs) were isolated from buffy coats taken from healthy blood donors and exposed to a pro-inflammatory milieu triggered by a double-hit stimulus: lipopolysaccharide (LPS) plus anti-CD3/CD28. The IDO1 mRNA levels in the PBMCs were measured by RT-PCR; the IDO1 activity was analyzed using the KYN/Trp ratio, measured by HPLC-EC; and lymphocyte proliferation was measured by flow cytometry. Trp and epacadostat (EP) were used as an IDO1 substrate and inhibitor, respectively. KYN, which is known to modulate Teffs, was tested as a positive control in lymphocyte proliferation. RESULTS: IDO1 expression and activity in PBMCs increased in an in vitro pro-inflammatory milieu. The lymphoid stimulus increased IDO1 expression and activity, which supports the interaction between the activated lymphocytes and the circulating myeloid IDO1-expressing cells. The addition of Trp decreased lymphocyte proliferation but EP, which abrogated the IDO1 function, had no impact on proliferation. Additionally, incubation with KYN seemed to decrease the lymphocyte proliferation. CONCLUSION: IDO1 inhibition did not change T lymphocyte proliferation. We present herein an in vitro experimental model suitable to measure IDO1 expression and activity in circulating myeloid cells.


Assuntos
Cinurenina , Leucócitos Mononucleares , Cinurenina/metabolismo , Leucócitos Mononucleares/metabolismo , Triptofano/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Monócitos/metabolismo
3.
Perception ; 53(1): 31-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872670

RESUMO

We present an experimental research aiming to explore how spatial attention may be biased through auditory stimuli. In particular, we investigate how synchronous sound and image may affect attention and increase the saliency of the audiovisual event. We have designed and implemented an experimental study where subjects, wearing an eye-tracking system, were examined regarding their gaze toward the audiovisual stimuli being displayed. The audiovisual stimuli were specifically tailored for this experiment, consisting of videos contrasting in terms of Synch Points (i.e., moments where a visual event is associated with a visible trigger movement, synchronous with its correspondent sound). While consistency across audiovisual sensory modalities revealed to be an attention-drawing feature, when combined with synchrony, it clearly emphasized the biasing, triggering orienting, that is, focal attention towards the particular scene that contains the Synch Point. Consequently, results revealed synchrony to be a saliency factor, contributing to the strengthening of the focal attention.


Assuntos
Percepção Auditiva , Percepção Visual , Humanos , Som , Movimento , Tecnologia de Rastreamento Ocular , Estimulação Acústica , Estimulação Luminosa
5.
Nanoscale ; 15(45): 18212-18217, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37933179

RESUMO

Herein, we investigate the bioactivity of small extracellular vesicles (sEVs), focusing on their local effect in the brain. sEVs from mononuclear cells (MNCs) showed superior effects in vitro to sEVs from mesenchymal stem cells (MSCs) and were able to promote neuroprotection and decrease microglia reactivity in a stroke mouse model.


Assuntos
Vesículas Extracelulares , Acidente Vascular Cerebral , Animais , Camundongos , Microglia , Neuroproteção , Encéfalo , Acidente Vascular Cerebral/terapia , Modelos Animais de Doenças
6.
Clin Transl Immunology ; 12(10): e1469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781343

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.

7.
Int J Bioprint ; 9(2): 675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065657

RESUMO

In situ bioprinting is one of the most clinically relevant techniques in the emerging bioprinting technology because it could be performed directly on the human body in the operating room and it does not require bioreactors for post-printing tissue maturation. However, commercial in situ bioprinters are still not available on the market. In this study, we demonstrated the benefit of the originally developed first commercial articulated collaborative in situ bioprinter for the treatment of full-thickness wounds in rat and porcine models. We used an articulated and collaborative robotic arm from company KUKA and developed original printhead and correspondence software enabling in situ bioprinting on curve and moving surfaces. The results of in vitro and in vivo experiments show that in situ bioprinting of bioink induces a strong hydrogel adhesion and enables printing on curved surfaces of wet tissues with a high level of fidelity. The in situ bioprinter was convenient to use in the operating room. Additional in vitro experiments (in vitro collagen contraction assay and in vitro 3D angiogenesis assay) and histological analyses demonstrated that in situ bioprinting improves the quality of wound healing in rat and porcine skin wounds. The absence of interference with the normal process of wound healing and even certain improvement in the dynamics of this process strongly suggests that in situ bioprinting could be used as a novel therapeutic modality in wound healing.

8.
PLoS One ; 18(2): e0281680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795647

RESUMO

Clinical auditory alarms are often found in hospital wards and operating rooms. In these environments, regular daily tasks can result in having a multitude of concurrent sounds (from staff and patients, building systems, carts, cleaning devices, and importantly, patient monitoring devices) which easily amount to a prevalent cacophony. The negative impact of this soundscape on staff and patients' health and well-being, as well as in their performance, demand for accordingly designed sound alarms. The recently updated IEC60601-1-8 standard, in guidance for medical equipment auditory alarms, proposed a set of pointers to distinctly convey medium or high levels of priority (urgency). However, conveying priority without compromising other features, such as ease of learnability and detectability, is an ongoing challenge. Electroencephalography, a non-invasive technique for measuring the brain response to a given stimulus, suggests that certain Event-Related Potentials (ERPs) components such as the Mismatch Negativity (MMN) and P3a may be the key to uncovering how sounds are processed at the pre-attentional level and how they may capture our attention. In this study, the brain dynamics in response to the priority pulses of the updated IEC60601-1-8 standard was studied via ERPs (MMN and P3a), for a soundscape characterised by the repetition of a sound (generic SpO2 "beep"), usually present in operating and recovery rooms. Additional behavioural experiments assessed the behavioural response to these priority pulses. Results showed that the Medium Priority pulse elicits a larger MMN and P3a peak amplitude when compared to the High Priority pulse. This suggests that, at least for the applied soundscape, the Medium Priority pulse is more easily detected and attended at the neural level. Behavioural data supports this indication, showing significantly shorter reaction times for the Medium Priority pulse. The results pose the possibility that priority pointers of the updated IEC60601-1-8 standard may not be successfully conveying their intended priority levels, which may not only be due to design properties but also to the soundscape in which these clinical alarms are deployed. This study highlights the need for intervention in both hospital soundscapes and auditory alarm design settings.


Assuntos
Alarmes Clínicos , Humanos , Potenciais Evocados/fisiologia , Atenção/fisiologia , Eletroencefalografia/métodos , Tempo de Reação/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Percepção Auditiva/fisiologia
9.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678582

RESUMO

Tramadol and tapentadol, synthetic opioids commonly prescribed for moderate-to-severe pain, have a unique pharmacology that optimizes their analgesia and safety. However, they are not devoid of risks, presenting addictive, abuse, and dependence potential. While tramadol-reinforcing properties have been documented by various studies with human and animal models, including conditioned place preference (CPP) assays, no similar studies have been performed with tapentadol. In the present study, we performed CPP assays by intraperitoneally administering Wistar rats with a tramadol/tapentadol therapeutic dose. Animal permanence and the number of entries in the CPP compartments were recorded in the preconditioning phase and then 1 (T1), 7 (T7), and 14 (T14) days after conditioning. Both opioids induced a change in place preference (T1), suggesting that they have short-term reinforcing properties. However, only tramadol was associated with place preference retention (T7 and T14), with an increase in the number of entries in the opioid-paired compartment (T1 and T7), showing that it causes rewarding memory and incubation of craving. The results indicate that at therapeutic doses: (1) both drugs cause short-term rewarding effects and (2) as opposed to tramadol, tapentadol does not cause CPP retention, despite its higher central nervous system activity and stricter scheduling.

10.
Polymers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501463

RESUMO

The concept of "lockyballs" or interlockable mini-scaffolds fabricated by two-photon polymerization from biodegradable polymers for the encagement of tissue spheroids and their delivery into the desired location in the human body has been recently introduced. In order to improve control of delivery, positioning, and assembly of mini-scaffolds with tissue spheroids inside, they must be functionalized. This review describes the design, fabrication, and functionalization of mini-scaffolds as well as perspectives on their application in tissue engineering for precisely controlled cell and mini-tissue delivery and patterning. The development of functionalized mini-scaffolds advances the original concept of "lockyballs" and opens exciting new prospectives for mini-scaffolds' applications in tissue engineering and regenerative medicine and their eventual clinical translation.

11.
Neurotox Res ; 40(6): 1924-1936, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36441450

RESUMO

Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols. In PND8, ex vivo analysis of hippocampal and frontal cortex slices evaluated cell viability and susceptibility to in vitro glutamate challenge. In adult rats, behavioral parameters related to anxiety-like behavior, short-term memory, and locomotor activity (PND60-62) and ex vivo analysis of cell viability, membrane permeability, glutamate uptake, and susceptibility to in vitro glutamate challenge in hippocampal and cortical slices from PND65. A single isoflurane (3%, 2 h) exposure at PND7 did not acutely alter cell viability in cortical and hippocampal slices of infant rats (PND8) per se and did not alter slice susceptibility to in vitro glutamate challenge. In rat's adulthood, behavioral analysis revealed that the neonatal isoflurane exposure did not alter anxiety-like behavior and locomotor activity (open field and rotarod tests). However, isoflurane exposure impaired short-term memory evaluated in the novel object recognition task. Ex vivo analysis of brain slices showed isoflurane neonatal exposure selectively decreased cell viability and glutamate uptake in cortical slices, but it did not alter hippocampal slice viability or glutamate uptake (PND65). Isoflurane exposure did not alter in vitro glutamate-induced neurotoxicity to slices, and isoflurane exposure caused no significant long-term damage to cell membranes in hippocampal or cortical slices. These findings indicate that a single neonatal isoflurane exposure did not promote acute damage; however, it reduced cortical, but not hippocampal, slice viability and glutamate uptake in the adulthood. Additionally, behavioral analysis showed neonatal isoflurane exposure induces short-term recognition memory impairment, consolidating that neonatal exposure to volatile anesthetics may lead to behavioral impairment in the adulthood, although it may damage brain regions differentially.


Assuntos
Anestésicos Inalatórios , Anestésicos , Isoflurano , Ratos , Animais , Isoflurano/toxicidade , Ácido Glutâmico/metabolismo , Memória de Curto Prazo , Sobrevivência Celular , Hipocampo , Lobo Frontal/metabolismo , Córtex Cerebral/metabolismo , Anestésicos Inalatórios/toxicidade
12.
Cell Tissue Res ; 390(3): 453-464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129531

RESUMO

In situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo. However, the development of unbiassed quantitative criteria of the regenerative potential of 3D tissue spheroids in vitro before their in situ bioprinting remains to be investigated. Here it has been demonstrated for the first time that specific correlations exist between the regenerative potential of human dermal fibroblasts cultured in vitro as 2D cell monolayer with biological properties of 3D tissue spheroids fabricated from these fibroblasts. In vitro assessment of biological properties included diameter, spreading and fusion kinetics, and biomechanical properties of 3D tissue spheroids. This comprehensive characterization could be used to predict tissue spheroids' regenerative potential in vivo.


Assuntos
Bioimpressão , Esferoides Celulares , Humanos , Fibroblastos , Técnicas de Cultura de Células , Pele , Engenharia Tecidual
13.
Mult Scler Relat Disord ; 63: 103886, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597080

RESUMO

BACKGROUND: Cuprizone (CPZ) is a copper chelator used to produce a reversible oligodendrocytopathy in animals, which has some similarities to the pathology found in human multiple sclerosis (MS). This model is attractive to study remyelination. AIMS: To demonstrate that a two-week period after cessation of CPZ exposure is sufficient to establish changes compatible with remyelination, without accompanying behavior or brain magnetic resonance imaging (MRI) disturbances. METHODS: Two groups of male C57BL/6 mice were fed an oral solution of CPZ (0.2%) for 5 weeks (W5); half of the animals were kept under the vehicle for another 2 weeks (W7). After 5 and 7 weeks, animals were subjected to a battery of behavioural tests and 18 animals to brain MRI. Animals' cerebellar samples were studied for gene expression and/or protein levels of GFAP, myelin proteolipid protein (PLP), TNF-α and IL-1ß. RESULTS: No differences were observed between CPZ-exposed and control animals, regarding behavior and MRI, both at W5 and W7. However, myelin PLP levels decreased in CPZ (W5) treated animals, and these changes reverted at W7. GFAP levels varied in the opposite direction. CONCLUSIONS: Observed changes validate the use of W5 and W7 temporal moments for the study of demyelination and early remyelination in this model.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Animais , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Bainha de Mielina/patologia
14.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163759

RESUMO

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Técnicas Bacteriológicas/instrumentação , Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/genética , Técnicas Bacteriológicas/métodos , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Glicólise , Glioxilatos/metabolismo , Fenômenos Magnéticos , Oxigênio/metabolismo , Aldeído Pirúvico/metabolismo , Voo Espacial , Ausência de Peso
15.
ACS Biomater Sci Eng ; 7(11): 5206-5214, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34610738

RESUMO

Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations. These microcapsules can be readily internalized and retained intracellularly for a long time in various types of cells. The low cytotoxicity of these microcapsules was previously shown in 2D cell culture. This paper has demonstrated that cells containing these nontoxic nanomaterials can form viable 3D tissue spheroids for the first time. The spheroids retained labeled fluorescent microcapsules with magnetic nanoparticles without a detectable cytotoxic effect. The high concentration of packed nanoparticles inside the microcapsules enables the evident magnetic properties of the labeled spheroids to be maintained. Finally, magnetic spheroids can be effectively used for magnetic patterning and biofabrication of tissue-engineering constructs.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Polímeros , Cápsulas , Campos Magnéticos , Engenharia Tecidual
16.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445512

RESUMO

(1) Background: One mechanism through which physical activity (PA) provides benefits is by triggering activity at a molecular level, where neurotrophins (NTs) are known to play an important role. However, the expression of the circulating levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4/5), in response to exercise, is not fully understood. Therefore, the aim was to provide an updated overview on the neurotrophin (NT) variation levels of BDNF and NT-4/5 as a consequence of a long-term aerobic exercise intervention, and to understand and describe whether the upregulation of circulating NT levels is a result of neurotrophic factors produced and released from the brain, and/or from neurotrophic secreting peripheral organs. (2) Methods: The articles were collected from PubMed, SPORTDiscus, Web of Science, MEDLINE, and Embase. Data were analyzed through a narrative synthesis. (3) Results: 30 articles studied humans who performed training protocols that ranged from 4 to 48 weeks; 22 articles studied rodents with an intervention period that ranged from 4 to 64 weeks. (4) Conclusions: There is no unanimity between the upregulation of BDNF in humans; conversely, concerning both BDNF and NT-4/5 in animal models, the results are heterogeneous. Whilst BDNF upregulation appears to be in relative agreement, NT-4/5 seems to display contradictory and inconsistent conclusions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Exercício Físico , Fatores de Crescimento Neural/sangue , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Regulação para Cima
18.
Arch Toxicol ; 95(8): 2769-2784, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34164711

RESUMO

Mitochondrial deregulation has emerged as one of the earliest pathological events in Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Improvement of mitochondrial function in AD has been considered a relevant therapeutic approach. L-carnitine (LC), an amino acid derivative involved in the transport of long-chain fatty acids into mitochondria, was previously demonstrated to improve mitochondrial function, having beneficial effects in neurological disorders; moreover, acetyl-L-carnitine (ALC) is currently under phase 4 clinical trial for AD (ClinicalTrials.gov NCT01320527). Thus, in the present study, we investigated the impact of different forms of carnitines, namely LC, ALC and propionyl-L-carnitine (PLC) on mitochondrial toxicity induced by amyloid-beta peptide 1-42 oligomers (AßO; 1 µM) in mature rat hippocampal neurons. Our results indicate that 5 mM LC, ALC and PLC totally rescued the mitochondrial membrane potential and alleviated both the decrease in oxygen consumption rates and the increase in mitochondrial fragmentation induced by AßO. These could contribute to the prevention of neuronal death by apoptosis. Moreover, only ALC ameliorated AßO-evoked changes in mitochondrial movement by reducing the number of stationary mitochondria and promoting reversal mitochondrial movement. Data suggest that carnitines (LC, ALC and PLC) may act differentially to counteract changes in mitochondrial function and movement in neurons subjected to AßO, thus counteracting AD-related pathological phenotypes.


Assuntos
Acetilcarnitina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Carnitina/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Carnitina/farmacologia , Células Cultivadas , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/parasitologia , Fármacos Neuroprotetores/química , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
20.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809599

RESUMO

3,4-Methylenedioxypyrovalerone (MDPV), a widely available synthetic cathinone, is a popular substitute for classical controlled drugs of abuse, such as methamphetamine (METH). Although MDPV poses public health risks, its neuropharmacological profile remains poorly explored. This study aimed to provide evidence on that direction. Accordingly, C57BL/6J mice were exposed to a binge MDPV or METH regimen (four intraperitoneal injections every 2 h, 10 mg/kg). Locomotor, exploratory, and emotional behavior, in addition to striatal neurotoxicity and glial signature, were assessed within 18-24 h, a known time-window encompassing classical amphetamine dopaminergic neurotoxicity. MDPV resulted in unchanged locomotor activity (open field test) and emotional behavior (elevated plus maze, splash test, tail suspension test). Additionally, striatal TH (METH neurotoxicity hallmark), Iba-1 (microglia), GFAP (astrocyte), RAGE, and TLR2/4/7 (immune modulators) protein densities remained unchanged after MDPV-exposure. Expectedly, and in sheer contrast with MDPV, METH resulted in decrease general locomotor activity paralleled by a significant striatal TH depletion, astrogliosis, and microglia arborization alterations (Sholl analysis). This comparative study newly highlights that binge MDPV-exposure comes without evident behavioral, neurochemical, and glial changes at a time-point where METH-induced striatal neurotoxicity is clearly evident. Nevertheless, neuropharmacological MDPV signature needs further profiling at different time-points, regimens, and brain regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...